Multiagent Shape Grammar
Implementation: Automatically
Generating Form Concepts
According to a Preference
Function

In new product development, quickly generating many product form concepts that a
potential consumer prefers is a challenge. This paper presents the inaugural multiagent
shape grammar implementation (MASGI) to automatically generate product form designs
according to a preference function that can represent designer or consumer design pref-
erence. Additionally, the multiagent system creates a flexible shape grammar implemen-
tation that enables modifications to the shape grammar as the form design space
changes. The method is composed of three subprocesses: a shape grammar interpreter
that implements the shape grammar, an agent system that chooses which shape grammar
rules to implement and the parametric design choices according to a preference function,
and a preference investigator that determines the preference function, which constraints
the automated form design process. [DOL: 10.1115/1.4000449]

Seth Orshorn

Department of Interdisciplinary Engineering,
Missouri University of Science and Technology,
Rolla, MO 65409

e-mail: orsborns@mst.edu

Jonathan Cagan
Department of Mechanical Engineering,
Carnegie Mellon University,
Pittsburgh, PA 15213

g-mail: cagan@cmu.edu

Keywords: shape grammar, multiagent system, preference function, automated product

form design

1 Introduction

In 2006, Orsborn and Cagan [1] first used shape grammars to
explore various nonobvious forms within vehicle classes and then
created novel forms of crossover vehicles. But it is not enough to
create novel form designs. These form designs should match
stakeholder preferences, be they designers or consumers. It was
then demonstrated that form preference can be quantified in a
utility function, which could guide the design process to create
forms that corresponded to a derived consumer preference [2].
This whole method, while valuable, was limited in that the deci-
sion making and analysis was conducted by humans. The research
presented in this paper leverages the previous work in an auto-
mated multiagent system (MAS): a multiagent shape grammar
implementation (MASGI). MASGI represents a form design space
with a shape grammar, uses design of experiments to determine
preference within the design space, and then automatically gener-
ates appropriate form design concepts through a MAS.

This paper first provides a background on preference functions,
shape grammars, and software agents. MASGI is next introduced
with an overview, and then each of the three subsections is dis-
cussed in detail. The MASGI methodology is applicable to any
grammar-based form design language, but a case study will be
used throughout the paper as a running example with the software
agents implementing a vehicle shape grammar to automatically
generate form designs according to consumer aesthetic form pref-
erence.

1.1 Preference. Computational representations of products
enable the automatic generation of designs. Not all designs are
valuable, but only the designs that meet the required criteria.
When considering product form concepts, the “good” designs are

Contributed by the Design Theory and Methodology Committee of ASME for
publication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received January 25,
2008; final manuscript received August 27, 2009; published online November 12,
2009. Editor: Panos Y. Papalambros.

Journal of Mechanical Design

Copyright © 2009 by ASME

those that match consumer aesthetic preferences. The aesthetic
form of a product influences consumer purchasing [3] and is a
factor in the success, or failure, of consumer products [4]. In an
attempt to determine which forms are preferred by the consumer,
product designers generate product form concepts and test them
against potential consumers through tools such as focus groups
and consumer surveys. A utility function is a specific type of
preference function used by economists to describe a person’s
utility, a measure of happiness, or satisfaction gained by using a
certain good or service [5]. Utility functions were used in engi-
neering design to quantify consumer and designer preference
[6,7]. 1t was demonstrated that consumer form preference can be
summarized in a utility function [8]. This utility function can then
be used as a preference function to constrain automated concept
design generation. In the concept generation phase of new product
development, many form concepts need to be quickly generated.
In this instance, they can be generated according to a derived
utility function, and thus, are likely to be preferred by the poten-
tial customer. This paper shows that a shape grammar imple-
mented in a MAS can quickly and automatically create many
concept designs within a form design space while adhering to the
constraints of a preference function.

1.2 Shape Grammars. For automated concept generation, it
was shown that a large number of divergent product form concept
designs within a specified design space can be easily created
through a parametric manipulation of a morphable model [9]. By
contrast, shape grammars enable form design exploration through
rule choices in addition to parametric variations, potentially in
new or creative ways. Shape grammars were used in a variety of
product design applications such as: architectural floor plans [10],
Chinese ice-ray lattice windows [11], coffee makers [12], Harley—
Davidson branding [13], the Buick vehicle brand [14], and vehicle
product classes [1].

Shape grammars are a geometry based production system cre-
ated by taking a sample of the whole, for which one is trying to
write a language [15]. From this sample, a vocabulary of shapes

DECEMBER 2009, Vol. 131 / 121007-1

Downloaded 06 May 2010 to 128.2.5.228. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

can be written that represents all the basic forms of that sample.
By defining the spatial relationships between those forms and how
the forms are related to each other, shape rules can be written. A
shape rule consists of a left and right side. If the shape in the left
side matches a shape in a drawing, then the rule can be applied,
and the matching shape changes to match the right side of the
rule. The shape rules allow the addition and subtraction of shapes,
which in the end are perceived as shape modifications. There are
multiple ways to drive a shape grammar. The simplest is to utilize
labels and markers. Labels are typically alphanumeric characters
attached to a shape. Markers are similar to labels, but are symbols
attached to a shape. In both cases, they are used to limit which
rules can and cannot be applied to the shape. If an appropriate
marker or label exists, then a rule can be applied.

Since shape grammars were first invented in the 1970s [15],
computational implementation was a challenge. The fundamental
problems related to shape arithmetic [16], the complexities in
computationally implementing straight line shape grammars
[17-19], and issues with curve recognition and implementation
[20,21] were all addressed. Each of these were limited by using a
traditional software architecture to implement a fixed shape gram-
mar, which constrained future modifications to the prescribed
grammar and thereby the design space. The introduction of a
shape grammar interpreter enabled addition and subtraction of
shape grammar rules [21]. The shape grammar interpreter required
a human agent to make the shape grammar rule choices, while
software agents made parametric choices based upon shape opti-
mization [22]. Implementing a shape grammar by integrating it
with software agents provides the flexibility of a shape grammar
interpreter and the speed of automated design generation, previ-
ously not available together. Subdividing tasks and assigning them
to different agents facilitates modification of the shape grammar,
and thus, the form design space. The goal for this work is a dy-
namic shape grammar interpreter architecture that enables auto-
matic form design generation. The methodology utilizes an itera-
tive process to filter and guide form designs to prune and optimize
the number of potential solutions. A vehicle form shape grammar
is used throughout this paper as a demonstration, but the method
is abstract enough that any shape grammar could be used instead.

1.3 Software Agents. The research presented in this paper is
built upon the software architecture often referred to as MASs or
simply agents. Software agents provide a discrete architecture that
facilitates future modifications. Unlike more common optimiza-
tion techniques (e.g., simulated annealing or genetic algorithms),
this discrete architecture enables changes to be easily made, e.g.,
adding or subtracting agents, without having to modify other sec-
tions of the code. The field of software agents is incredibly di-
verse. Recent research included programming languages that sim-
plify agent interactions with each other and their environment
[23], and simplifying agent interactions by creating communica-
tion structures similar to human conversations [24]. Agents are
proving their effectiveness in traditional optimization problems
like flexible job shop scheduling [25], and are even being used in
conjunction with game theory to accomplish complex problems
such as traffic light coordination [26].

The intention of this research is not to further the work done in
MAS:s, but to utilize existing software agent concepts in a new
way: shape grammar implementation. These software agents
implement a shape grammar to automatically create form designs
according to a preference function. If this preference function
summarizes a consumer’s preference for product aesthetic form,
as is the case in this work, the generated designs are assured to be
preferred by the consumer.

It is quite common to utilize existing agent modeling tools such
as SeSAm [27] when conducting agent research. Existing agent
modeling tools were found to be insufficient in this work, due to
the unique interactions between the agents, the shape grammar
interpreter, and the preference investigator. The software architec-
ture introduced in this paper was created specifically for this re-

121007-2 / Vol. 131, DECEMBER 2009

search. The genealogy of this architecture starts with A-Teams
[28,29], where agent optimization is detailed and contrasted with
respect to other more common optimization techniques such as
simulated annealing and genetic algorithms [30]. More recently,
software agents were used to optimize the design parameters in an
engineering shape grammar [22], though not to implement the
shape grammar. A-Design also demonstrated the effectiveness of
agent architecture in design optimization [31], which was further
improved by including agent interactions [32]. In each of these,
the software architecture is composed of a manager agent and
several task-specific agents. The manager oversees the design pro-
cess and maintains a library of all necessary information such as
constraints, current designs, completed designs, and allowable
agent interactions. The task-specific agents are each responsible
for a single aspect of the design process and must report their
optimization decisions to the manager and other agents, as
allowed.

One approach to using MASs for design exploration is for de-
sign team simulation. The MAS represents each design constraint
with a single agent. Each agent can be responsible for product
design and work cooperatively [32], or a single agent can be re-
sponsible for one part of the design process [33]. The MAS archi-
tecture presented in this paper establishes each agent as respon-
sible for a particular product form feature, dividing the design
process into discrete product choices. These collaborative agents
enable the MAS to function beyond the sum of the individual
members [34]. This system model is similar to industry practice
where one agent, e.g., an engineering designer, may be respon-
sible for a particular product feature, e.g., the headlight of a ve-
hicle. Section 2 will detail how the agent definitions and construct
above will be used, uniquely, to create MASGI.

2 MASGI Structure

Prior to this research, computational shape grammar implemen-
tation required manual rule choices. In this work, we demonstrate
that a MAS can automatically implement a shape grammar, creat-
ing form concept designs through rule choices without human
input. This section introduces the relationship between the MAS
structure and the form design space, and then some basic agent
properties. The MASGI will then be described, generally at first
and then in detail, in conjunction with an example of its imple-
mentation related to a case study of the vehicle form design.

The MASGI is intended to reflect a design team [32], and there-
fore should also match the design space representation. Agents are
used so that future modifications to the product form design space
can be easily implemented through the addition or subtraction of
agents or the design features they implement.

Any product or system can be represented with a hierarchy.
Specific to the example, the representation of a complex form
with lesser features is called atomization [35]. For example, the
form of an automobile can be separated into product characteris-
tics like the headlight, grill, and fender. Then each vehicle char-
acteristic can be subdivided into a set of curves that best represent
that characteristic. The relationship between these characteristic
curves can then be summarized with distinguishing atomic at-
tributes such as the vertical height of the grill. These atomic at-
tributes can be modified to change the overall form of the vehicle:
the gestalt, while the consumer sees only a change in product
form.

The MASGI structure maps directly to the hierarchical atomic
sequence. Figure 1 shows both sequences, the atomic sequence on
the left, and the MASGI sequence on the right. The overall prod-
uct form and the design progression is handled by a single man-
ager agent, similar to the manager of a design team. Each one of
the many product characteristics is assigned a characteristic agent,
similar to an individual designer responsible for a certain aspect of
a new product. The design space is represented with characteristic
curves. The characteristic agent is allowed to access certain shape

Transactions of the ASME

Downloaded 06 May 2010 to 128.2.5.228. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Product Manager
Form Agent
Product Characteristic
Characteristics Agents
Characteristic Shape
Curves Rules
Atomic Attribute
Attributes Values
(a) (b)

Fig. 1 Atomic and MASGI sequences

rules from a shape grammar that create the characteristic curves.
When the curves are created, parametric attribute values are se-
lected for each of the atomic attributes.

Herein lies the advantage of using a MAS to implement a shape
grammar: flexibiliry. Each step in the atomic sequence (Fig. 1(a))
can be mapped to a specific component in the MASGI sequence
(Fig. 1(b)). Therefore, future updates and modifications within the
atomic sequence do not require a rewrite of the algorithm, but can
be addressed by adding (or subtracting) components in the
MASGI sequence. For example, more product characteristics can
be added to the design space through the addition of more char-
acteristic agents without modifying the base code. With a MAS
architecture, future adjustments at any level can be made easily.

SHAPE
GRAMMAR <] | GShape
rammar
INTERPRETER
B:i?; Stochastically
Changes choose Rule
Agent
AGENT <T| Parameters
SYSTEM
<} Constraints

Design Preference

Analysis Function
PREFERENCE < Product
INVESTIGATOR Attributes

v

I Final Preference Function I

Fig. 2 Method overview

Journal of Mechanical Design

This architecture is applicable to any product (not just vehicles) as
long as the form of the product is broken into its key characteris-
tics, and a shape grammar is created to explore the product form
design space.

3 General Method

The overall method (Fig. 2) is composed of three main sections:
the shape grammar interpreter that seeks out the left hand side of
shape grammar rules and transforms to the right hand side, the
agent system that chooses shape grammar rules to apply and au-
tomatically generates and optimizes product designs, and the pref-
erence investigator that seeks out and mathematically represents
form design preferences. Each part is crucial to the implementa-
tion of the shape grammar, the facilitation of modifications to the
shape grammar, and the automatic design of product forms that
match consumer preferences. A MAS keeps each process separate,
which facilitates future modifications and updates. This constraint
requires a consistent communication protocol between the differ-
ent sections.

3.1 Shape Grammar. Beyond the three main process sec-
tions, additional inputs are required. The shape grammar needs to
be created for the design space. Traditionally, and in this instan-
tiation, this is done manually. Once the rule set is created, it is
passed to the shape grammar interpreter.

The shape grammar implemented for the case study was created
to demonstrate the features of this method. The chosen vehicle
characteristics are complex enough to be visually interesting yet
simple enough to represent with atomic attributes. The headlight,
grill, and related features (darkened lines in Fig. 3(a)) are repre-
sented with the atomic attributes in Fig. 3(b). These few vehicle
characteristics provide a large space for exploration with many
varied results.

The vehicle shape grammar in the Appendix is composed of an
initial shape, 14 shape insertion rules, and 6 shape modification
rules. The initial shape is simply the coordinate axes in Fig. 3. The
14 shape insertion rules each insert all or part of a vehicle char-
acteristic in both the front and side view. Each shape insertion rule
is assigned to its characteristic agent: rules 1-2 to the ground,
rules 5 and 6 to the hood, rules 7—12 to the grill, and rule 13 to the
headlight. Rules 4 and 14 exist to complete the form design and
are assigned to the manager for this instantiation. Each shape
insertion rule creates a set of four-control-point Bezier curves,
which represent that product characteristic. The characteristic

V1hoodz

V4hdltz

(b)

Fig. 3 SUV characteristics and attributes

DECEMBER 2009, Vol. 131 / 121007-3

Downloaded 06 May 2010 to 128.2.5.228. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Manager
1 1

Ground Hood Fixed Grill Headlight
Rules Rules Rules Rules Rule

| Rule 1 ‘ | Rule 5 | ‘ Initial | | Rule 7 | |Rule13|

| Rule 2 ‘ | Rule 6 | ‘ Rule 4 | | Rule 8 |

Rule 12

Modification Rules

|RuleDHRuIeE||RuIeF||RuIeG||RuIeH|| Rule | |

Fig. 4 Characteristics and rules tree for implementation

agent chooses a value for a particular attribute (Fig. 3(b)) accord-
ing to its objective function. The actual shape of the curves (the
location of their control points) are then calculated, based upon
the attribute value. Finally, the shape modification rules can be
accessed by any of the characteristic agents to make further
changes to their shapes, based upon their objective functions.

3.2 Agent Parameters. Figure 4 demonstrates the relation-
ship between the manager agent and the characteristic agents, just
as the MASGI sequence introduced in Fig. 1. The manager over-
sees the design process by coordinating the four characteristic
agents: ground, hood, grill, and headlight. Additionally, in regards
to this study, the manager is responsible for characteristics and
shapes that facilitate the form design called fixed rules. Each of
the characteristic agents make design choices by implementing the
shape grammar rules specific to their characteristic and can make
design modifications by implementing the modification rules.

The relationship between the agents and the shape grammar
rules is the agent parameters in Fig. 2, which is an input to the
method. The agent-rule matrix (Fig. 5) communicates the content
of the MASGI sequence (Fig. 4) to the manager agent by indicat-
ing which agents can apply which grammar rules. For example, in
Fig. 5, ground can only apply rule 1, but all the agents, except the
manager, can apply rule D. Each agent has very specific rules
based upon their product characteristic. Depending on the product
form design space and how the shape grammar is written, there
may be overlaps between agents and rules.

3.3 Constraints. There are two types of constraints passed in
to the agent system. The first type constrains the form design
choices. There are parametric constraints for each attribute, which
can be derived from sample data that is also used to create the
grammar rules. For example, the vehicle shape grammar was cre-
ated based upon a product sample of SUVs from the 2003 model
year. The parametric constraints from the product sample, such as
the largest and smallest wheel radii, are used as input constraints.
These constraints are not necessarily fixed and may be modified
by the designer for the sake of design exploration.

The second type constrains the design process. Information
passed in to the manager agent include the number of designs
requested, optimization constraints, and the results from the de-
sign of experiments. The preference function is determined
through an initial design analysis and a verification design analy-
sis. The design of experiments is used as the input for creating the
initial design analysis. In the case study, the design analysis is a
survey administered to potential consumers. The respondent re-
sults from the initial survey are used to determine the weights for

121007-4 / Vol. 131, DECEMBER 2009

Initial
Rule 1
Rule 2
Rule 3
Rule 4
Rule 5
Rule 6
Rule 7
Rule 8
Rule 9
Rule 10
Rule 11
Rule 12
Rule 13
Rule 14
Rule D
Rule E
Rule F
Rule G
Rule H
Rule |

Fig. 5 Agent-rule matrix

the preference function. The experiment may be designed by ex-
isting software packages or it could be random. Future research
will incorporate the design of experiments within the preference
investigator. Likewise, an additional agent could be created just
for this task. In this instantiation, the design of experiments is
created using SAS, a business analytics software, and is then input
to the manager agent as a data file.

3.4 Attributes. The final input to the method are the at-
tributes used to describe the product form. The information trans-
ferred is the shape information used to create the atomic attributes
(Figs. 1 and 3). In this instance, the atomic attributes determine
the initial form of the preference function, which communicates to
the agents which curves should be explored.

4 Method Details

4.1 Agent System. The agent system (Fig. 6) is the heart of
the method, but is supported by and integrated with the shape
grammar interpreter and the preference investigator. The agents
explore the design space, choose shape grammar rules, and create
form designs based upon the utility function.

There are four specific attributes for a multiagent design sys-
tem, which are all taken into account in this MASGI architecture
[31]. First, the system is designed to create and improve upon
form design alternatives. This is accomplished through an internal
iteration that allows the selection of shape modification rules. Sec-
ond, the shape grammar is the representation of the conceptual
design space, constrained by the preference function. This repre-
sentation is understood by the agents and is the framework in
which they automatically create form design concepts. Third, the
preference function serves as a means for multiobjective decision
making, in that each characteristic agent is designed to optimize
its individual preference functions for the attributes in its shape

Transactions of the ASME

Downloaded 06 May 2010 to 128.2.5.228. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

| Agent Parameters |

MANAGER
Determines # of Designs
Determines objective functions

AGENT Preference
INTERPRETER Function
BEST
DESIGNS

AGENTS
Stochastically Sort & Select IL Consumer
choose Agent top Design Survey
Stochastically if < Max W
choose Rule INC%'\I'E‘E%JE Iteration Trash
Lower
Designs
COMPLETE
Sort & Select
Return New top Designs
Values

Trash
Lower
Designs

Fig. 6 Agent system process

characteristics. The MASGI allows for future modifications, not
only to the agents and the shape grammar, but also to the prefer-
ence function itself. Fourth, if the design preference (either con-
sumer or designer) is to change, further iterations in the program
can account for those changes and update the preference function
as necessary.

The agent system is separated into two segments: the agents
themselves and the sorting system. The manager agent is static
and does not change regardless of the product form space or the
shape grammar rules. The manager receives the constraints, as
described previously, including several additional pieces of infor-
mation, which affect design optimization, and will be discussed at
the end of this section.

Because the characteristic agents are collaborative, the manager
plays a crucial role. The manager oversees the design process by
determining which agent should be chosen at the beginning of
each iteration. Each stage must start with the manager. This is best
demonstrated by stepping through one iteration of the method:

1. The manager selects the top design from the incomplete de-
signs list. This list is initially populated with blank designs.

2. The manager checks a list of shape grammar labels and
markers attached to the top design to see which ones are
active. The active labels and markers indicate which shape
grammar rules can be applied to which product characteris-
tics. The manager then stochastically chooses a single char-
acteristic agent from all the potentially active characteristic
agents.

3. The characteristic agent checks to see which labels and
markers are active, and stochastically chooses a rule based
upon the agent-rule matrix (Fig. 5). The characteristic agent
then stochastically chooses the attribute values passed to the
shape grammar interpreter with the rule choice.

4. The attribute values and the rule choice are passed to the
shape grammar interpreter.

5. The shape grammar interpreter returns the design changes
based on those attribute values; the values associated with
the top design are updated and then evaluated to determine if
the objective function has improved, e.g., higher utility. If
not, the design is passed back to the incomplete designs list
so that the agents can further improve the design.

6. If the objective function has improved, all the labels and
markers are checked to determine if the design is complete.
If any labels or markers still exist, the design is passed back

Journal of Mechanical Design

to the incomplete designs list so that the agents can apply
more shape grammar rules.

7. If the design is complete, i.e., no more shape rules can be
applied and has an improved objective function, it is passed
to the complete designs list. The complete designs list stores
all the completed designs in one design iteration. Once the
complete designs list is full, it is sorted, and the top designs
are passed to the best designs list. The best designs list stores
the best designs found through multiple design iterations.

8. If the desired number of design iterations (an input variable)
has not been completed, the incomplete designs and com-
plete designs lists are reinitialized and the process continues.
If the desired number of iterations has been completed, the
best designs list is sorted, and the final set of designs is
passed to the design analysis for evaluation.

There are two advantages to sorting the complete designs list,
best designs list and the incomplete designs list. First, by passing
designs with lower objective function values back to the incom-
plete designs list; they can continue to be modified. Since the
agents are implementing a shape grammar, this promotes design
exploration. Designs with lower objective function values can be
improved upon by characteristic agents, choosing modification
rules, and thus making design modifications. Even if a design is
complete, the agents can continue to modify various attributes
until the objective function is improved. When implementing the
shape grammar, there is no limitation as to the number of times an
agent may choose to modify an attribute. This modification itera-
tion can go on indefinitely. This actually could become a problem
in practice, which will be discussed in Sec. 4.1.1.

Second, the sorting of the complete designs and best designs
lists ensures that only the best designs within a single iteration are
kept. After many iterations, the near-optimum designs will even-
tually be found. Since the process is always looking to maximize
the objective function, as the top designs within a set get closer to
the optimum, more iterations will be required with more modifi-
cation rules making changes to the designs. The number of design
iterations does not need to be large. If the design lists are large
enough and each design is required to be better than the previous
one, eventually, designs near the optimum will be found. All of
this should be kept in the perspective that the intention of this
MASGI is not to find the optimum, but to find a set of designs that
are optimally directed, and hence, match the preference function.

DECEMBER 2009, Vol. 131 / 121007-5

Downloaded 06 May 2010 to 128.2.5.228. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

4.1.1 Input Variables for List Sorting. In the agent system
(Fig. 6), the manager accepts six variables that affect design list
sorting: Direction, PercentRestart, Quantity, MaxIteration, and
MaxTries.

Direction determines which way the design lists (incomplete
designs, complete designs, and best designs) are sorted. If intend-
ing to create form designs that maximize the preference function
(e.g., designs that the consumer will prefer), the lists are sorted so
that the design with the largest positive value is first, then the next
largest is second, and so on. When looking for form designs that
minimize the preference function (e.g., designs that the consumer
will not prefer), the lists are sorted so that the design with the
largest negative objective function value is first, then next largest
is second, and so on.

The objective function is created by multiplying PercentRestart
by the objective function value of the previous design. In an op-
timization sequence, PercentRestart was typically set at 90% to
encourage finding form designs close to the optimum, but also to
allow exploration. If the only intention was to get as close to the
optimum as possible, PercentRestart is set to 100% to ensure that
each successive design in an iteration has a higher absolute objec-
tive function value than the previous design.

Quantity is the number of form designs created for each itera-
tion, which is also the length of the design lists. If the number for
Quantity is large, a form design with a large absolute objective
function value is more likely to be found in a few iterations,
depending on PercentRestart. The tradeoff is that the sorting time
is increased due to more designs, and the overall time efficiency
decreases. In the case study, it was found that a Quantity of 14
designs in the incomplete designs and complete designs lists was
usually a good balance.

Maxlteration is the number of iterations before the best designs
list is sent to the design analysis. This was found to be dependant
upon the number of attributes being optimized. It was found in the
case study that when a set of 55 attributes was used, 200 iterations
were usually sufficient. For seven attributes, 20 iterations were
usually sufficient. In general, to get a set of good designs, the
minimum number of iterations should be three to four times the
number of attributes. If not enough good designs were created in
the assigned number of iterations, the method could be run again.

MaxTries is the fifth and final variable added to the manager
input. As noted earlier, due to the nature of the shape modification
rules, the agents can continue to modify form designs indefinitely,
trying to find a design better than the optimum. MaxTries sets the
limit as to how many rule applications can take place for a single
form design. In the case study, it was found that setting MaxTries
to 1000 iterations was sufficient, and very few designs used even
half that many shape grammar rule applications. This number
would vary greatly depending on the implemented shape grammar
and the number of atomic attributes needed for a completed form
design. Another technique would be for the iteration to exit if the
objective function value for a modified design has not improved
upon the previous top design within a certain percentage.

4.1.2 Effect of Input Variables for Sorting. To demonstrate
how the iterative sorting methods guide and prune the designs,
consider a typical design from the case study, in which the agents
choose random values for the seven attributes in Fig. 3(b). The
inputs to the manager are: Quantity=14 designs, MaxlIteration
=200 iterations and PercentRestart=90%. MASGI found a design
with utility of 0.795, 99% of the maximum utility, using 101,966
rule applications to create 2800 complete form designs. MASGI
automatically generates considerably more concept form designs
than a human could, whether from their experience or through a
manual implementation of the shape grammar. The number of rule
choices needed for convergence is also highly dependent upon the
objective function that is being optimized. If the objective func-
tion is linear, traditional optimization techniques would be suffi-
cient. MASGTI’s iterative method is most beneficial for nonlinear
objective functions.

121007-6 / Vol. 131, DECEMBER 2009

4.2 Shape Grammar Interpreter. The shape grammar inter-
preter receives design choice information from the agent system,
applies chosen shape grammar rules within parametric constraints,
and passes the design changes back to the agent system. In this
research, the unique contribution is the MAS, automatically
implementing the shape grammar to create form designs accord-
ing to an objective function. No significant changes beyond its
adaptation to the MASGI are added to the shape grammar inter-
preter architecture of McCormack and Cagan [20], and this imple-
mentation does not include the use of emergence. The shape
grammar interpreter receives the shape grammar rules (Fig. 7),
which consist of curve creation rules and curve modification rules,
as detailed in the Appendix.

The process sequences as follows.

1. Before the process starts, the shape grammar interpreter re-
ceives the full set of build and modify rules.

2. During the design process, the shape grammar interpreter
receives a signal from the agent system that a certain rule
has been chosen stochastically.

3. With the indication of a chosen rule comes the parametric
values for the atomic attributes related to that rule; the de-
sign decision is made by the characteristic agent.

4. The shape grammar interpreter applies the chosen rule (build
or modify), and removing and adding shapes as indicated.

5. If there is any change in labels or markers, the shape gram-
mar interpreter indicates these.

6. All of the design changes (attributes, labels, and markers)
are then passed back to the agent system as a completed
design choice.

The shape grammar interpreter is independent of the agent sys-
tem, in that it only receives design information, applies a rule, and
returns design information. This isolation, made possible by the
MAS, is advantageous, in that changes to the shape grammar can
be made independently with respect to the rest of the MAS. The
computational implementation of the shape grammar is best ex-
plained through the use of a pseudocode, detailed in Figs. 8 and 9,
and explained through a running example. Recall that an existing
multiagent architecture was not used, but this architecture was
created especially for this MASGI.

The manager (Fig. 6) checks the top design from the incom-
plete designs list and sees that labels 6 and 7 are active, and
markers exist for the ground, wheels, grill, and hood. The man-
ager then stochastically chooses between characteristic agents
(Fig. 5), and chooses the headlight agent. The headlight agent
checks the labels and markers list for the top design (Fig. 8) and
determines that labels 6 and 7 exist and the headlight markers do
not exist. The headlight agent chooses to insert the shape and
determines that it can apply rule 13. The hood agent then chooses

Shape
Grammar

Stochastically

choose Rule
\l/ SHAPE
Rule GRAMMAR
Applied | INTERPRETER Return
Design
Update Changes
labels

Fig. 7 Shape grammar interpreter process

Transactions of the ASME

Downloaded 06 May 2010 to 128.2.5.228. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

//CHARACTERISTIC AGENT
get(labels and markers for top design from design list)
choose(insert or modify)
if(insert)
determine(which rules can be applied based upon labels and markers)
choose(rule)
choose(parametric values for attributes)
send(values to Rule)
if(modify)
determine(which curves exist based upon markers)
choose(rule)
choose(curve)
get(parametric values for attributes)
modify(parametric values for attributes)
send(values to Rule)

Fig. 8 Characteristic agent pseudocode

//SHAPE GRAMMAR RULE
receive(parametric values from characteristic agent)
get(top design from design list)
put(parametric values to top design from design list)
get(labels and markers for top design from design list)
update(labels and markers)
put(labels and markers to top design from design list)

Fig. 9 Shape grammar rule pseudocode

to apply rule 13 (Fig. 10) and stochastically chooses the paramet-
ric value for V1hdltz. The headlight agent then passes these values
to rule 13.

Rule 13 receives the attribute values from the headlight agent
(Fig. 9). Rule 13 then gets the top design, as shown in Fig. 11,
from the incomplete designs list (Fig. 5). Rule 13 takes the new
attribute values, inserts the curve, and replaces these values in the
top design. Rule 13 then gets the labels and markers for the top
design and replaces them, based upon the application of rule 13,
removing labels 6 and 7, and inserting markers for the headlight
curves, as shown in Fig. 12. The updated top design with the
updated labels and markers is then passed back to the agent sys-
tem for design evaluation (Fig. 6).

The vehicle shape grammar allows for some nonlinearity in its
application. Which order the characteristic rules are implemented
does not need to be sequential. Additionally, since modification
rules can be chosen at any time in the form design (as long as the
curve being modified exists and the markers have not been re-
moved), the number of rule choices can vary greatly per design.
Table 1 shows the minimum number of rule choices needed for
the characteristic agents to create a completed form design. The
rules chosen by the manager are not counted as a step, in that they

Rule 13
Front

|
| Rule 13
| Side

|

|

Fig. 10 Headlight rule

3 3 2

Fig. 11 Before headlight rule application

Journal of Mechanical Design

o4 4
T
3 3 2
Fig. 12 After headlight rule application
Table 1 Most concise design sequence
Agent Rule Verbal description
Step Manager Initial shape Insert coordinate system
1 Ground Rule 1 Set track width
2 Ground Rule 2 Set wheel base
3 Ground Rule 3 Insert ground curves
Manager Rule 4 Insert front wheel
4 Hood Rule 5 Set cowl position
5 Hood Rule 6 Insert hood
6 Grill Rule 7-12 Insert grill
7 Headlight Rule 13 Insert headlight
Manager Rule 14 Insert rest of vehicle
8 Any Rule I Remove markers

are fixed for each design.

In step 6 of Table 1, the grill agent can choose any one of rules
7-12 (a variety of grill forms) to get a completed form design and
not change the total quantity of rule choices. Many different de-
signs can be generated from just eight rule applications by varying
which grill rule is chosen and by varying the attribute values. For
each shape modification rule, the number of rule applications in-
creases. As the agents are attempting to satisfy the objective func-
tion, they can continue to select shape modification rules until the
form design improves.

To summarize, for each design decision, the implementation of
any single rule is a cooperative effort between the characteristic
agent and the rule. The agent determines which rules can be ap-
plied. Once a rule is chosen, the related attribute values are deter-
mined and passed to the shape grammar rule. The shape grammar
rule accepts the modified attribute values and makes the appropri-
ate changes to the labels and markers.

4.3 Preference Investigator. The preference investigator
(Fig. 13) accomplishes the task of determining weights for the
preference function and verifying that the chosen weights match
the intended preference, e.g., a utility function [8]. How it accom-
plishes this will now be detailed by stepping through the process.

1. The choice of product attributes is an input to the preference
investigator and becomes the attributes for the preference
function.

2. This preference function is then passed to the agent system
(the manager in particular) for form design generation.

3. Once the agent system has a finished set of designs, the
designs are evaluated in the design analysis: a consumer
survey in the case study.

4. The results from the design analysis are then analyzed. If
this is the first iteration through the process, the weights for
the attributes in the preference function have not yet been
estimated.

5. The preference investigator determines these weights using
LOGIT, PROBIT, Luce, or any applicable statistical analysis
method.

6. These weights are included in the preference function and
then passed back to the agent system for further form design
exploration.

DECEMBER 2009, Vol. 131 / 121007-7

Downloaded 06 May 2010 to 128.2.5.228. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Product
Attributes
|

PREFERENCE v

INVESTIGATER Form of
Preference
Function

N

Determine
B's for
No Attributes

Preference
Function

1st
Iteration
?

Design
Analysis

Yes

I Final Preference Function I

Fig. 13 Preference investigator process

7. After the second set of designs go through design analysis,
the results determine if the weights for the preference func-
tion are verified.

8. If the preference function is not verified, then the weights
are adjusted accordingly and the preference function is
passed back to the agent system for further form design
exploration and generation.

9. When the preference function is considered to sufficiently
capture the intended preference, the process exits and the
final preference function is determined.

The design analysis in step 3 could be any number of persons or
programs, depending on the scenario. If the intention is to capture
consumer preference, as in a new product form conceptualization,
the design analysis could be a consumer survey. The design analy-
sis could be a designer if the designer’s preference is being evalu-
ated, as when trying to understand a designer’s personal style. The
design analysis could even be computer programmed to analyze
form designs according to an existing brand definition. In step 5,
determining the attribute weights can be done iteratively or just
once. The more iterations, the more likely the preference function
truly represents the design preference.

Table 2 summarizes the attribute weights for respondent 30
from the consumer survey in the case study (refer to Fig. 3(b) for
the attribute positions on the vehicle), where the preference func-
tion used was a quadratic utility function u; (Eq. (1)), where x; is
an attribute from Fig. 3(b) and Bij is a preference weight for that
attribute. These weights, as part of the preference function, were
passed through the MASGI to automatically generate the form
design concepts shown in Figs. 14-16. As can be seen, the pref-
erence function causes a strong visual difference between the ve-
hicle form designs

;= Byx; + Bxi+ B (1)

Table 2 Respondent 30 preference function weights

Bi B Bs

Hcowlx 0 —0.0069 0.4395
Hcowlz —0.0023 0.232 —5.735
V1hoodx 0 0 0
V1hoodz —0.0033 —0.0776 —0.4049
Vlgrllz 0 0.0058 0.0607
V1hdltz 0.0046 —0.0802 0.3196
V4hdltz 0.0097 0.2718 1.5518

121007-8 / Vol. 131, DECEMBER 2009

="

Fig. 14 Respondent 30 high utility design 1

S

Fig. 15 Respondent 30 neutral utility design 2

= g —

Fig. 16 Respondent 30 low utility design 6

5 Discussion

In summary, MASGI is an automated MAS that explores form
design spaces and creates new designs through implementing a
shape grammar while meeting the constraints of an objective
function. The entire product form is represented with specific
product attributes that are created through shape grammar rules.
Each product attribute has a software agent responsible for its
design decisions. All the agents work together to create a com-
pleted form design. Each “near-optimum” design is automatically
created to match a preference function, e.g., a utility function
representing a person’s form preference. Figures 14-16 demon-
strate just a few concept form design examples. MASGI is able to
quickly produce a large number of concept form designs, which
can then be refined in the early stages of new product develop-
ment.

The next level of research should address the refinement of this
methodology in three ways. First, the agent system and shape
grammar implementation are automated, but the preference inves-
tigation was implemented independently through existing soft-
ware packages. The independent analysis slowed down the overall
form concept generation method so that only a single design
analysis was possible within a reasonable amount of time. For this
method to produce better results, through iteration, the preference
analysis needs to be automated.

Second, preference modeling is still quite limited by the num-
ber of attributes that can be analyzed efficiently and effectively. In
general, preference modeling research must create new methods
for accurately determining preference for large design spaces,
given a minimum amount of data. This, combined with the auto-
mation of the preference investigator, will shorten the design
analysis time and enable this methodology to be used effectively
for complex product form examples.

Third, while the agent system is intended to be as robust as
possible, further refinement in the architecture will maximize the
potential of this methodology. MASGI is currently a collaborative
agent system, where each agent makes choices independent of one
another and function sequentially. As the agents are refined to
better simulate design teams, the agents will become cooperative,
functioning in parallel and negotiating design decisions.

6 Conclusions

The form of a product must match consumer preference if it is
to succeed in the marketplace. The challenge is to quickly create

Transactions of the ASME

Downloaded 06 May 2010 to 128.2.5.228. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

product form concepts according to consumer preference so that

|
these concepts can be evaluated and used as a foundation for T:l:;? ' Rsuilse4
further product design refinement. This paper introduced a '
MASGI for creating product form concepts based upon a derived > J ' > \
consumer preference. The MASGI takes shape grammar rules, an ., .. ! j—o, 3
agent-rule matrix, design constraints, and design attributes as in- ~ _ _ b 2_
put. A preference investigator determines an appropriate prefer- Riile 5 : Riilas
ence function by presenting a design analysis created using design Front Side
of experiments. Software agents in an agent system explore and i : 4
choose .d651gns based upon the preference func'tlon. The software = Heowlz | > HCOW{
agents implement a shape grammar to automatically generate the
chosen form design concepts. These product form designs can ®3 3 : ®3 3T_|
then be presented to the potential consumer for evaluation. i Hcowlx
The MAS construction enables a flexible, automated shape @~ — — —~ —~ ~ ~ — =~ = = = — T T T T T T T T T
grammar implementation. Should the design space change, prod- Rule 6 | Rule &
uct characteristic agents and shape grammar rules can be added or Front | Side
removed without needing to modify the entire program. Addition- ., —, .,
ally, we have shown that in the implementation of the shape gram- > s° | > o/_:
|

mar, the software agents can choose many different rule sequences
and still arrive at form designs that match the preference function.
This demonstrates the creative potential built into the MASGI, Fig. 19 Wheel and hood rules
which facilitates design exploration through the shape grammar

and characteristic agents. Form designs are generated automati-

cally and quite efficiently. The preference function provides a fil-

ter and guidance to produce a preferred design. As the design R;';!
space becomes larger and more complicated, different simplified

|
|
[
[] L]
parametric representations will need to be explored. 5 >) : E > Ij
[]
|

6 6 7
Acknowledgment — ___________ _ b m — — .
Funding for this research was partially provided by the National Rule 8 I Rule 8
Science Foundation under Grant No. DMI-0245218. Front I Side
° | °
. 5 > 5 > I
Appendix 6: : : oo,
Figures 17-23 show the initial shape, ground rules, wheeland Lo
hood rules, grill rules, headlight rule, final rule, and general modi- |
fication rules, respectively. Rule 9 | Rule 9
Front : Side
[] []
S S &
Initial Shape Initial Shape I °
Front Side 6 | 6 z
e e e e
Rule 10 | Rule 10
Front | Side
5® 9 : | 5® 9 I
6 : 6% ®7
Fig. 17 Initialshape @~~~ -~~~ 7~~~ 7777 |
Rule 11 I Rule 11
Rule 1 : Rule 1 o Front : o Slde
Front | Side 5 > :D ; 5 > D
[6 | 6 ®7
-> ! 2> | e == - o s ot o o
1 1 Rule 12 ! Rule 12
____________ === =====- Front I Side
Rule 2 I Rule 2 ° [°
Front | Side 5 >) | 2 > I
' 6 [6® 7
| |
s
o 1® » Fig. 20 Grill rules
____________ | — — — o — — — — =
Rule 3 | Rule 3 I
Front | Side Rule 13 | Rule 13
| Front Side
| -—— -—— I e— —
> . > = o E R i o
o —*, 1° & 1&—* 6® 6® I 6® 7 6®
Fig. 18 Ground rules Fig. 21 Headlight rule
Journal of Mechanical Design DECEMBER 2009, Vol. 131 / 121007-9

Downloaded 06 May 2010 to 128.2.5.228. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Rule 14
Front

3 3 2
Fig. 22 Final rule

RuleD

/—\ 9
[]

T Rbee

[]

° Rule F

/_\ ->

Rule G

—— o S o——o
Rule H
[]
> &
[] []
—
X
Rulel
. >
Fig. 23 General modification rules
References

[1] Orsborn, S., Cagan, J., Pawlicki, R., and Smith, R. C., 2006, “Creating Cross-
Over Vehicles: Defining and Combining Vehicle Classes Using Shape Gram-
mars,” Artif. Intell. Eng. Des. Anal. Manuf., 20(3), pp. 217-246.

[2] Orsborn, S., Boatwright, P., and Cagan, J., 2009, “Quantifying Aesthetic Form
Preference in a Utility Function,” ASME J. Mech. Des., 131(6), p. 061001.

[3] Berkowitz, M., 1987, “Product Shape as a Design Innovation Strategy,” J.
Prod. Innovation Manage., 4(4), pp. 274-283.

[4] Bloch, P. H., 1995, “Seeking the Ideal Form: Product Design and Consumer
Response,” J. Marketing, 59(3), pp. 16-29.

[5] Von Neumann, J., and Morgenstern, O., 1944, Theory of Games and Economic
Behavior, Princeton University Press, Princeton, NJ.

[6] Chen, W., Wiecek, M., and Zhang, J., 1999, “Quality Utility—A Compromise
Programming Approach to Robust Design,” J. Mech. Des., 121(2), pp. 179—
187.

[7] Callaghan, A., and Lewis, K., 2000, “A 2-Phase Aspiration-Level and Utility
Theory Approach to Large Scale Design,” Proceedings of the ASME DETC
2000, Baltimore, MD.

[8] Orsborn, S., Boatwright, P., and Cagan, J., 2008, “Quantifying Aesthetic Form
Preference in a Utility Function,” Proceedings of the ASME Design Engineer-

121007-10 / Vol. 131, DECEMBER 2009

ing Technical Conferences: Design Theory and Methodology Conference,
Brooklyn, NY.

[9] Smith, R. C., Pawlicki, R., Kokai, L., Finger, J., and Vetter, T., 2007, “Navi-
gating in a Shape Space of Registered Models,” IEEE Trans. Vis. Comput.
Graph., 13(6), pp. 1552-1559.

[10] Stiny, G., and Mitchell, W. J., 1978, “The Palladian Grammar,” Environ.
Plann. B, 5(1), pp. 5-18.

[11] Stiny, G., 1977, “Ice-Ray: A Note on the Generation of Chinese Lattice De-
signs,” Environ. Plann. B, 4(1), pp. 89-98.

[12] Agarwal, M., and Cagan, J., 1998, “A Blend of Different Tastes: The Language
of Coffeemakers,” Environ. Plan. B: Plan. Des., 25(2), pp. 205-226.

[13] Pugliese, M., and Cagan, J., 2001, “Capturing a Rebel: Modeling the Harley-
Davidson Brand Through a Motorcycle Shape Grammar,” Res. Eng. Des.,
13(3), pp. 139-156.

[14] Mccormack, J., Cagan, J., and Vogel, C., 2004, “Speaking the Buick Lan-
guage: Capturing, Understanding, and Exploring Brand Identity With Shape
Grammars,” Des. Stud., 25(1), pp. 1-29.

[15] Stiny, G., 1980, “Introduction to Shape and Shape Grammars,” Environ.
Plann. B, 7(3), pp. 343-351.

[16] Krishnamurti, R., 1980, “The Arithmetic of Shapes,” Environ. Plann. B, 7(4),
pp. 463-484.

[17] Krishnamurti, R., and Earl, C., 1992, “Shape Recognition in Three Dimen-
sions,” Environ. Plan. B: Plan. Des., 19(3), pp. 267-288.

[18] Chase, S. C., 1989, “Shapes and Shape Grammars: From Mathematical Model
to Computer Implementation,” Environ. Plan. B: Plan. Des., 16, pp. 215-242.

[19] Tapia, M. D., 1999, “A Visual Implementation of a Shape Grammar System,”
Environ. Plan. B: Plan. Des., 26(1), pp. 59-73.

[20] Mccormack, J., and Cagan, J., 2002, “Supporting Designers’ Hierarchies
Through Parametric Shape Recognition,” Environ. Plan. B: Plan. Des., 29(6),
pp. 913-931.

[21] Mccormack, J., and Cagan, J., 2006, “Curve-Based Shape Matching: Support-
ing Designer’s Hierarchies Through Parametric Shape Recognition of Arbi-
trary Geometry,” Environ. Plan. B: Plan. Des., 33(4), pp. 523-540.

[22] Mccormack, J., and Cagan, J., 2002, “Designing Inner Hood Panels Through a
Shape Grammar Based Framework,” Artif. Intell. Eng. Des. Anal. Manuf.,
16(4), pp. 273-290.

[23] Dastani, M., 2008, “2apl: A Practical Agent Programming Language,” Auton.
Agents Multi-Agent Syst., 16(3), pp. 214-248.

[24] Kagal, L., and Finin, T., 2007, “Modeling Conversation Policies Using Per-
missions and Obligations,” Auton. Agents Multi-Agent Syst., 14(2), pp. 187—
206.

[25] Ennigrou, M., and Ghedira, K., 2008, “New Local Diversification Techniques
for Flexible Job Shop Scheduling Problem With a Multi-Agent Approach,”
Auton. Agents Multi-Agent Syst., 17(2), pp. 270-287.

[26] Bazzan, A. L. C., 2005, “A Distributed Approach for Coordination of Traffic
Signal Agents,” Auton. Agents Multi-Agent Syst., 10(1), pp. 131-164.

[27] Klugl, F., Herrier, R., and Fehler, M., 2006, “Sesam: Implementation of Agent-
Based Simulation Using Visual Programming,” Proceedings of the AAMAS,
Hakodate, Japan.

[28] Talukdar, S. N., 1993, “Asynchronous Teams,” Proceedings of the Fourth
International Symposium on Expert Systems Applications to Power Systems,
LaTrobe University, Australia.

[29] Talukdar, S. N., 1999, “Collaboration Rules for Autonomous Software
Agents,” Decision Support Sys., 24(3-4), pp. 269-278.

[30] Sachdev, S., 1998, “Explorations in Asynchronous Teams,” Ph.D. thesis, Car-
negie Mellon University.

[31] Campbell, M., Cagan, J., and Kotovsky, K., 1999, “A Design: An Agent-Based
Approach to Conceptual Design in a Dynamic Environment,” Res. Eng. Des.,
11(3), pp. 172-192.

[32] Olson, J. T., and Cagan, J., 2004, “Interagent Ties in Team-Based Computa-
tional Configuration Design,” Artif. Intell. Eng. Des. Anal. Manuf., 18(2), pp.
135-152.

[33] Shaker, C., and Brown, D. C., 2004, “Constructing Design Methodologies
Using Multiagent Systems,” Artif. Intell. Eng. Des. Anal. Manuf., 18(2), pp.
115-134.

[34] Singh, M. P.,, and Huhns, M. N., 1994, “Automating Workflows for Service
Order Processing: Integrating Ai and Database Technologies,” IEEE Expert,
9(5), pp. 19-23.

[35] Durgee, J. F., 1988, “Product Drama,” Journal of Advertising, 17, pp. 42-49.

Transactions of the ASME

Downloaded 06 May 2010 to 128.2.5.228. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

